1. Find, in terms of e, the exact value of $\int_{1}^{\mathrm{e}}\left(1+\frac{5}{x}\right) \mathrm{d} x$.
2.

The curve C has equation $y=\mathrm{f}(x), x \in \square$. The diagram above shows the part of C for which $0 \leq x \leq 2$.

Given that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{x}-2 x^{2}
$$

and that C has a single maximum, at $x=k$,
(a) show that $1.48<k<1.49$.
(3)

Given also that the point $(0,5)$ lies on C,
(b) find $\mathrm{f}(x)$.

The finite region R is bounded by C, the coordinate axes and the line $x=2$.
(c) Use integration to find the exact area of R.

1. $\int\left(1+\frac{5}{x}\right) \mathrm{d} x=x+5 \ln x$ A1
$[x+5 \ln x]_{1}^{\mathrm{e}}=(\mathrm{e}+5)-1=\mathrm{e}+4 \quad$ Correct use of limits A1 4
2. (a) $\mathrm{f}^{-1}(x)=0$ for maximum (or stationary point or turning point)

B1
$\mathrm{f}^{1}(1.48)=e^{1.48}-2 \times 1.48^{2}=0.0121 \ldots$
$f^{1}(1.49)=\quad=-0.0031 \ldots$
change of sign \therefore root / maximum in range
A1 3
May be \Rightarrow if maximum mentioned at A1
One value correct to 1 S.F.
A1 Both correct and comment
(b) $y=e^{x}-\frac{2}{3} x^{3}(+c)$

$$
\begin{align*}
& \text { at }(0,5) \quad 5=e^{0}-0+c \\
& \underline{c=4}\left(y=e^{x}-\frac{2}{3} x^{3}+4\right) \quad(c=4) \tag{4}
\end{align*}
$$

Some correct \int
A1 $e^{x}-\frac{2}{3} x^{3}$
Attempt to use $(0,5)$
$\mathrm{No}+\mathrm{c}$ is MO
(c) Area $=\int_{0}^{2}\left(e^{x}-\frac{2}{3} x^{3}+4\right) \mathrm{d} x$

$$
\begin{gathered}
=\left[e^{x}-\frac{2}{12} x^{4}+4 x\right]_{0}^{2} \\
=\left(e^{2}-\frac{16}{6}+8\right)-\left(\mathrm{e}^{\ddot{0}}-0+0\right) \\
=\underline{e^{2}+4} \frac{1}{3} \text { or } \underline{e^{2}+\frac{13}{3}} \\
\text { Some correct } \int \underline{\text { other than } e^{x} \rightarrow e^{x} .} \quad \mathrm{A} 1 \mathrm{ft} \\
\text { A1 ft }[] \text { ft their } c(\neq 0) .
\end{gathered} \quad \text { A1 cao } 4
$$

1. This question was generally well done, although many lost the final mark by leaving their answer ase $+5 \ln \mathrm{e}-1$, instead of tidying up to $\mathrm{e}+4$.
2. Most candidates were familiar with the type of question in part (a) but a few still failed to evaluate the derivative at 1.48 and 1.49.

Simply stating that $\mathrm{f}^{\prime}(1.48)>0$ and $\mathrm{f}^{\prime}(1.49)<0$ is not sufficient. Some candidates failed to appreciate the answer their calculator gave them was in standard form and -3.1 instead of -0.0031 was a common mistake. In part (b) most integrated successfully but some forgot to include the constant of integration and were not then able to use the point $(0,5)$ properly. There were still a few who substituted $\frac{\mathrm{d} y}{\mathrm{~d} x}$ into $y-y_{1}=m\left(x-x_{1}\right)$.

The technique required in part (c) was well known but many candidates failed to heed the instruction to give the exact area.

